Software

Publications

Google Scholar

Selected Publications

(* indicates student collaborators)

Distribution Learning and Generative Models
  1. Peng, Y.*; Yang, S.; Khoo, Y.; Wang, D. (2025).
    Tensor Density Estimator by Convolution‐Deconvolution.
    Preprint: [pdf]
  2. Peng, Y.*; Khoo, Y.; Wang, D. (2024).
    Nonparametric estimation via variance‐reduced sketching.
    Preprint: [pdf]
  3. Wang, D.; Lu, X.; Rinaldo, A. (2019).
    DBSCAN: Optimal rates for density based clustering.
    Journal of Machine Learning Research, 20.170:1-50. [pdf]
  4. Ciollaro, M.; Genovese, C.; Wang, D. (2016).
    Nonparametric clustering of functional data using pseudo‐densities.
    Electronic Journal of Statistics, 10.2:2922-2972. [pdf]
Supervised Learning
  1. Padilla, C.M.M.*; Padilla, O.H.M.; Wang, D. (2024).
    Temporal‐spatial model via Trend Filtering.
    Preprint: [pdf]
  2. Zhang, Z.; Padilla, C.M.M.*; Wang, D.; Padilla, O.H.M. (2024).
    Dense ReLU neural networks for temporal‐spatial model.
    Preprint: [pdf]
  3. Wang, D.; Zhao, Z.; Yu, Y.; Willett, R. (2022).
    Functional linear regression with mixed predictors.
    Journal of Machine Learning Research, to appear. [pdf] [R code]
Change Point Detection
  1. Xu, H.*; Wang, D.; Zhao, Z.; Yi, Y. (2024).
    Change point inference in high‐dimensional regression models under temporal dependence.
    Annals of Statistics, 52.3: 999-1026. [pdf] [R package]
  2. Padilla, C.M.M.*; Xu, H.; Wang, D.; Padilla, O.H.M.; Yu, Y. (2023).
    Change point detection and inference in multivariable nonparametric models under mixing conditions.
    NeurIPS 2023. [pdf]
  3. Wang, D.; Yu, Y.; Rinaldo, A. (2021).
    Optimal change point detection and localization in sparse dynamic networks.
    Annals of Statistics, 49.1:203-232. [pdf] [R package]
  4. Wang, D.; Yu, Y.; Rinaldo, A. (2020).
    Univariate mean change point detection: Penalization, CUSUM and optimality.
    Electronic Journal of Statistics, 14.1:1917-1961. [pdf] [R package]